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Abstract

Tsunamis and storms can be incredibly destructive events. The direct observational
record of important characteristics of these events, such as flooding height, inun-
dation, and flow speed, is often lacking. Coupled with field data acquisition, a
tremendous amount of additional information can be gained through experimental
laboratory studies and by applying numerical inverse models to mud and sand
deposits often associated with these events. This chapter outlines typical field and
sampling approaches to study tsunami-derived deposits, common data modeling
techniques for constraining/reconstructing flood conditions from resultant deposits,
experimental investigations, and future directions in the field.
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Introduction

Tsunamis and storms are often devastating events that can cause tremendous loss of
life and financial cost. The largest and most destructive events are rare, meaning that
data from them are limited to sparse direct observations during the abridged histor-
ical record. Even with modern technology, it is still challenging to fully capture and
observe sediment transport patterns associated with tsunami and storm events.
Experimental and numerical models of fine sediment (defined in this chapter as
mud to sand) transport offer very important constraints that provide a unique oppor-
tunity to understand these events in greater detail. In many instances, experiments/
models that are applicable to modern and ancient events serve as the only available
tool to constrain flood and flow magnitudes and gain a better understanding of the
process of tsunami inundation. By incorporating field-based information and making
appropriate assumptions about a particular event, inverse numerical models allow
important tsunami characteristics to be calculated and/or constrained. Experimental
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FIGURE 23.1
Flow chart summarizing this chapter.

(or laboratory flume) studies examine tsunami and storm impacts in a controlled
environment, often shedding light on hydrodynamic conditions and the resulting
sedimentary deposits. All three techniques together can be viewed as a holistic
approach (Fig. 23.1). Ultimately, this information provides an important context
that can be used for coastal planning of disaster mitigation activities, such as
designing and implementing coastal engineering structures, producing evacuation
and geohazard maps, and making management decisions.

Tsunamis and storms have the ability to move sediment of all sizes ranging from
mud all the way to megaboulders. The depositional patterns (Chapter 11) in tsunami
deposits preserved within the geological record have been studied for decades
(e.g., Shepard et al., 1950; Kon’no, 1961; Coleman, 1968; Makino, 1968). Modern
storm overwash has also been extensively studied (e.g., Hayes, 1967; Morton, 1979;
Nummedal et al., 1980; Kahn and Roberts, 1982; Stone and Wang, 1999; Donnelly
et al., 2006; La Selle et al., 2017). Much can be learned from the resultant sedimen-
tary deposits left behind from these events, where fine-grained deposition (i.e., mud
to sand sizes) is often a defining feature. A landward thinning and fining of the
deposit is generally observed in tsunami deposits (Fig. 23.2), with a sharp, often
erosive bottom contact containing rip-up clasts (Sugawara et al., 2014). The pres-
ence of marine diatoms and foraminifera within the deposit can indicate a marine
source (Chapter 12; Chapter 14; Pilarczyk et al., 2014). The deposit geometry is a
feature that may be useful for discrimination between tsunami and storm deposits
(Morton et al., 2007). Sedimentary structures within flood deposits are often useful
to elucidate physical processes. For example, tsunami deposits often contain larger
distinct units of fining upward sequences from suspension deposition (Jaffe et al.,
2012). Storm overwash stratigraphy is in general a result of a larger number of
shorter wind waves that can lead to complex, fine-scale depositional strata often
truncated by erosional surfaces. However, there is no robust criterion for unequivo-
cally delineating tsunami and storm deposits as they can consist of similar structures
(Switzer and Jones, 2008).

Coupling or comparing this sedimentary information with experimental models
and more detailed numerical simulations constitutes a powerful tool to explore char-
acteristics of tsunami events (Fig. 23.1), which are challenging or impossible to
measure otherwise. This includes important tsunami parameters such as inundation
area, speed, runup height, and flow depth. Direct instrumental and video
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FIGURE 23.2

Schematic of tsunami wave overwashing a barrier beach and inundating a back-barrier
lagoon. Water surface (blue) and corresponding velocities (red) are based on simulations
and highlight the high velocities and transition to near critical flow over the barrier. These
high velocities also result in enhanced turbulence that serves to suspend sediment
throughout the water column. Following advection into the lagoon, velocities and
corresponding turbulence are reduced, which results in the settling of grains and a
landward fining of the resulting deposit.

Adapted from Woodruff et al. (2008).

observations of these flood characteristics are often unavailable, and proxy estimates
following the event (e.g., elevations of wrack lines and other high-water marks) are
often associated with significant uncertainty. Because of the complexities and uncer-
tainty associated with these parameters, there is great value in obtaining additional
constraints via experimental studies and modeling of sediment transport, which is an
intrinsically collaborative process, involving geology, hydrodynamics, hydraulics,
mathematics, and physics. Inverse numerical simulations of fine sediment transport
by tsunamis are separated into forward and inverse approaches. See Sugawara et al.
(2014) for a discussion of the information that can be learned from forward
modeling approaches. Since the focus of this chapter is primarily on initial field-
based inputs to extract useful information from deposits (for example, see the infor-
mation extracted from Woodruff et al. (2008) shown in Fig. 23.2), we focus our
discussion on general laboratory studies and inverse approaches on tsunami
deposits. Under appropriate assumptions, both types of approaches are applicable
to storm events as well.

This chapter describes typical field surveys, sample methods, common calcula-
tions related to each inverse model, experimental approaches, challenges, and future
directions. It is intended to be used to select field sites and sampling strategies to
obtain the necessary data required for basic inverse model applications or experi-
mental studies (Fig. 23.1). The type of inverse model used should be related to
the appropriate assumptions for a given tsunami or storm scenario, as outlined sub-
sequently (Table 23.1). This coupled information can also be helpful in experimental
study setup and determining comparability.
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Table 23.1 Inverse approaches, basic assumptions involved, major inputs,
and major outputs.

Inverse
model
approach

Particle
settling

Particle
trajectory

Particle
trajectory

References

Smith et al.
(2007)

Soulsby et al.
(2007)

Moore et al.
(2007)

Basic
assumptions

Sediment
transported in
suspension;
sediment gradually
settles out from
suspension during
each impacting
tsunami wave
producing fining
upward
sequences;
depositional time
for each sequence
is related to an
assumed wave
period

Maximum depth of
inundation
decreases linearly
with distance from
the shoreline;
suspension
transport; settling
treated as a
moving sediment
column until all
sediment in the
water deposited;
landward thinning
deposit
Suspension
transport; no
resuspension after
deposition; large
grain sizes fully
suspended within
water column; law
of the wall
applicable

Major inputs

Slowest settling
velocity

Settling velocities
at several
locations within
deposit; deposit
thickness
measurements;
grain size
distributions within
deposit

Largest particle
settling velocity
(Dgo or Dgs);
particle distance
traveled

Major
outputs

Tsunami
water depth

Runup
height;
inundation
distance

Tsunami
height;
spatially-
averaged
flow speed
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Inverse

model Basic Major

approach References assumptions Major inputs outputs

TsuSedMod: | Jaffe and Suspension Settling velocities Shear

Equilibrium Gelfenbaum transport; steady at suspension- velocity;

suspension (2007) flow turbulence graded sections; depth-
formulation flow depth; averaged
applicable; bottom roughness | and
significant maximum
sediment supply velocity

for suspension;
equilibrium
suspension;
deposit
components from
cClearing
suspended
sediment; no
erosion/
resuspension
during settling or
from backwash

Field surveys and sample analysis methods

There are many important considerations for post-event field survey and reconnais-
sance efforts (Chapter 10 ITST, 2014; Wilson et al., 2015). After a tsunami event
occurs, it is important to access a site where field observations and measurements
will take place soon after the event. Primary reasons for rapid sampling are related
to the ephemeral nature of water level indicators and the fact that weathering, bio-
turbation, and human response efforts that often times move sediment will disturb
sedimentary deposits. With respect to event deposits, post-tsunami surveys are
often conducted away from developed areas to avoid human impacts and flow
and transport complexities associated with manmade structures. Additionally,
plants and animals can rapidly colonize and alter the sedimentary sequences
through bioturbation, and natural physical post-depositional reworking can also
occur via rain, wind, etc. Selecting a site with observational information can be
quite advantageous for comparisons of model outputs and experimental studies.
One strategy typically employed to discover potential sites and deposits is utilizing
pre- and post-event aerial imagery and response surveys often conducted by gov-
ernment agencies.
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Another important consideration for field surveys and sample locations concerns
the environment targeted. Typical environments have a prominent source of material
(i.e., sediment supply) and an area with some degree of preservation potential. For
paleo-studies, it is incredibly important to select a site with high long-term preser-
vation potential. The integration of observations with models/experiments often re-
quires elevation measurements of the coastal setting along with notes on where
coastal geomorphology could have been altered significantly during the tsunami
event. In general, these practices can lead to the study of natural event stratigraphy,
a key component to extracting the necessary information to apply inverse models
and comparability to experimental work.

Once a potential event deposit is discovered, there are a general set of best prac-
tices for information to collect and observations to make. The first step involves field
mapping of the sedimentary deposit, noting the extent of deposition both horizontal-
ly and laterally. This is an important step as it allows for a quantification of the po-
tential sediment flux (when combined with sufficient estimates of sediment dry bulk
density). This could also involve runup and inundation measurements of the event,
which are frequently used to inform or validate numerical models (Satake et al.,
1993; Piatanesi et al., 1996; Synolakis and Okal, 2005). Sampling the deposit at a
resolution that best captures the spatial variability (both vertical and horizontal) is
also critical, not only to obtain subsamples for dry bulk density measurements,
but also for future analyses of grain size and composition.

Trenches can be dug to sample important facies, making particular note of where
the deposit transitions into the pre-event sediments. Sediment cores can also be
collected in lieu of trenches. One advantage of trenches is that subtle, spatially vary-
ing sedimentary features can be identified, perhaps indicating runup versus back-
wash processes. One advantage of sediment cores is that in situ material can be
collected and returned to the lab. Much deeper and continuous sedimentary records
can also be collected with sediment cores, which often allows for the analysis of
older event layer deposits preserved at a particular location. For either trenches or
cores, the next steps involve targeting shore-normal and parallel transects that
adequately describe the spatial distribution and variability of a particular deposit.
It is difficult to recommend a single strategy of distance between samples; however,
an estimate could be based on gridding the aerial extent of the deposit at a resolution
that is feasible to sample in the time allotted. It is important to note that oftentimes
follow-up fieldwork and data collection is necessary as no two event deposits are
identical, so it can be challenging to collect all necessary data from one field
campaign.

Accurate measurements of each sample location and associated elevations in the
field are important for future assessments of sediment transport distance. If possible,
the source of material being transported (from the beach, offshore, etc.), should be
identified and sampled as well. Within the deposit, there are a number of grain size
observations that should be made. First, the deposit thickness should be measured.
Occasionally, it is not obvious where one deposit begins and ends, or how to delin-
eate between event and non-event sedimentation. For paleotsunami and storm
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FIGURE 23.3

Schematic model of tsunami event sedimentation, depositional processes, and extent.
Grains (orange circles) begin to settle out of suspension in a zone of spatially quasi-uniform
flow and deceleration as it moves onshore (blue boxes). Note normal and/or suspension
grading occurring in right blue inset.

Adapted from Jaffe and Gelfenbaum (2007).

investigations, it is often necessary to use a variety of dating techniques including
tephra (Page et al., 2010), '*C (Libby et al., 1949; Libby, 1955), *'°Pb (Faure,
1986), '*7Cs (DeLaune et al., 1978), pollen (Rich, 1970; Brugam, 1978), and indus-
trial heavy metals (McCaffrey and Thomson, 1980; Bricker-Urso et al., 1989) to
obtain a sediment core chronology to better link event deposits to the timing of flood
events of interest. One should also carefully observe for evidence of normal grading
(i.e., fining upward), which is often indicative of sediment settling out of suspension
(Fig. 23.3). Several units of normal grading are particularly useful in identifying
multiple deposits or one event with different stages of deposition associated with
runup and returning flows. A lack of this type of normal bedding could indicate
resuspension or predominantly bed-load transport, so all sorting patterns should
be noted. Finally, a full grain size distribution of the deposit, typically collected at
1-cm vertical resolution or less, is often useful. However, the grain size sampling in-
terval should be dictated by factors such as deposit thickness and observed vari-
ability. Grain density and shape can be important properties to collect particularly
when determining provenance. These particle parameters are also sometimes used
to refine calculations of settling velocity, although this velocity can also be directly
measured via a settling tube in the lab using the collected sediment. Fixed volume
sampling also allows for dry bulk density measurements.

Inverse modeling approaches

Inverse sedimentologic modeling as defined herein is a model that uses the data ob-
tained from sedimentary deposits associated with a tsunami or storm event to infer
characteristics of the event on the basis of the first principles of hydrodynamics and
sediment transport. Here, we broadly characterize the primary types of inverse
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models as particle settling, particle trajectory, equilibrium suspension, and com-
bined. When informed with measurements from resultant deposits, these models
have been used to help constrain flow speed, runup height, and inundation distance.
The specific model that can be applicable to a particular tsunami or storm event
should be carefully related to the necessary assumptions for model validity, outlined
in detail subsequently and in Table 23.1.

Particle settling

Smith et al. (2007) use the sediment characteristics associated with a paleotsunami
deposit coupled with an approximate wave period to estimate flow depth. The model
assumes that sediment is transported in suspension, sediment gradually settles out
from suspension during each impacting tsunami wave producing fining upward se-
quences, and the depositional time for each sequence is related to the wave period
(Table 23.1). The reconstructed tsunami water depth is calculated by assuming a
wave period set to the time of settling and then using the settling velocity (w;) of
the slowest individual settling particle to infer flood depth based on equations by
Soulsby (1997):

wy = v/d[ (10367 + 1.049D3)"° — 10.36] (23.1)

where v is the kinematic viscosity, and d is the median grain diameter. The dimen-
sionless grain size (D) is represented by the following:

0.333
D, = les = D" d (23.2)
[v?]

where g is acceleration due to gravity, and s is ratio of the density of sediment and
water. Additional settling velocity equations (e.g., Ferguson and Church, 2004) exist
outside of Eq. (23.1) presented here and could be similarly substituted. The Smith
et al. (2007) model was applied to the Holocene Storegga Slide tsunami at Montrose,
Scotland, to estimate maximum flow depths, though it is challenging to assess the
performance as it was only applied to this paleo-deposit.

Particle trajectory

Soulsby et al. (2007) present a simple trajectory-based model of tsunami hydrody-
namics and sediment dynamics that can estimate runup and inundation distance from
observed sedimentary deposits. Several basic assumptions are described here, but for
a more robust discussion, see Soulsby et al. (2007). The maximum depth of inunda-
tion is assumed to decrease linearly with distance from the shoreline. The wave is
also assumed to consist of high amounts of suspended sediment. The settling is
treated as a moving sediment column until all of the sediment in the water is depos-
ited. The contribution of grain sizes to the tsunami deposit decreases landward and
results in a landward thinning deposit. Additionally, the model assumes no



Inverse modeling approaches 499

resuspension after deposition (Table 23.1). The runup of sediment (Ry) is related to
the runup of water (R,):

Ry
Rs= 23.3
ST+ ay ( )
where v is the duration of uprush divided by the duration of backwash at the shore-
line, and
T
a= (23.4)
H

where T'is total inundation time, and H is the maximum tsunami depth. Tsunami de-
posit thickness at the shoreline ({;) can be estimated using

_a(l+ay) (G
G= S (E>H (23.5)

where Cj is the suspended sediment concentration in the water column, and pp is the
dry bulk density of the tsunami deposit. Furthermore, the thickness ({(x)) deposited
decreasing with distance x from the shoreline can be estimated using the following:

L(x)= :0<1 —;) for x < Rg, and O for x > Ry (23.6)
S

This model has been successfully applied to the 1929 Grand Banks tsunami and
the Holocene Storegga Slide tsunami (Soulsby et al., 2007). Reasonably good agree-
ment was determined between predicted and observed runup for the 1929 event, but
only an estimate can be provided for the Holocene event since it is unknown.

Moore et al. (2007) developed a particle trajectory or advective settling model
based on the fact that many observed tsunami deposits fine with distance inland.
As coarser particles settle faster than finer particles, their transport distances tend
to be less. Thus, Moore et al. (2007) essentially relate the trajectory and distance
a particle travels landward by the settling velocity and wave speed assuming a con-
stant horizontal “advective” transport velocity (Fig. 23.2). A few assumptions are
necessary for this approach, namely that large grains are fully suspended within
the water column at some point near the coast followed by strict settling out of sus-
pension landward with a steady horizontal flow (Table 23.1). No resuspension oc-
curs during settling, and it is assumed that the deposit is not source limited, so
there is a sufficient supply and distribution of grain sizes at the coast for transport.
Assuming particles are mixed to the top of the water column, the time, ¢, it takes for
these grains to settle out of suspension is related to the maximum travel time that
these grains can be horizontally carried to the most landward position that they
are observed:

H Xr,
-t == 23.7
U ( )
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where H is the shoreline tsunami height, wg is the settling velocity, x;, is the particle
horizontal distance traveled, and U is the horizontal flow speed. Typically, the dis-
tance a particle travels can be measured in the field, and settling velocity can either
be estimated from theoretical work (e.g., Ferguson and Church, 2004) or measured
directly in the laboratory (Syvitski et al., 1991; Woodruff et al., 2008; Hong et al.,
2018). The law of the wall describes how turbulence near a boundary (or wall) is
related to the flow conditions associated with this boundary. The depth-averaged
law of the wall relates water depth (/) to depth-averaged flow velocity (U):

Uy h
U= X (ln(g) — 1) (23.8)

where u+ is the shear velocity, K is the von Karman constant, and z; is the bed rough-
ness length (often approximated as D84/30 during hydraulically rough flows; Mid-
dleton and Southard, 1984). Moore et al. (2007) effectively reconstructed the 1929
Grand Banks tsunami from sediments deposited in Newfoundland, Canada.

Water depth and flow velocity (Fig. 23.2) have also been mathematically related
(Woodruff et al., 2008) assuming near critical flow of a tidal bore traveling over near
dry land at the point of complete suspension, so the average flow velocities within
the bore are equal to its shallow water wave speed (i.e., U = +/gh). Under such con-
ditions water depth over the barrier (h;) is approximated as shown:

2. 2\1%
<hb> — (xLWS) (23.9)
g

This model (Fig. 23.2) has been successfully applied to settings around the
world, including modern and paleo-hurricane overwash deposits along the Carib-
bean (Woodruff et al., 2008), Atlantic (Brandon et al., 2014), South Pacific (Hong
et al., 2018), and the Gulf of Mexico (Wallace and Anderson, 2010; Bregy et al.,
2018), as well as tsunami deposits in Japan (Baranes et al., 2016).

The aforementioned particle trajectory models assume complete and unhindered
settling following initial suspension, which is almost certainly an oversimplification
of the process given the exclusion of turbulent resuspension common to highly en-
ergetic flows. They also generally assume that there is an abundance of sediment of
varying grain sizes at the point of initial suspension, so the resulting deposit is not
source limited. To account for non-uniform flow width associated with focused flow
through low-lying regions of a coastal barrier, Baranes et al. (2016) added an addi-
tional term (f) to represent the ratio of flow width over the barrier relative to the
inland width of inundation. A Froude number term (Fr;) was also added to account
for uncertainty in flow conditions and observations ranging between 0.8 and 1.5
along the backside of the barrier system (e.g., Holland et al., 1991; Donnelly
et al., 2006). These additions resulted in the following relationship between settling
velocity and flow depth:

_f Fr, \ghy®
- =

Wy (23.10)
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Even with the additions in Eq. (23.10), results from any idealized trajectory
model should always be viewed as approximate at best, yet still serving as a valuable
constraint, particularly when providing a relative comparison of flood magnitudes
for a sequence of deposits from a single site and assuming no major geomorpholog-
ical changes have occurred over the period of comparison.

Equilibrium suspension

Jaffe and Gelfenbaum (2007) present an iterative equilibrium suspension model
(TsuSedMod) based primarily on the fact that many tsunami deposits consist of a
fining upward sequence (i.e., normal grading). During an approaching tsunami
wave, sediment is stirred in suspension, with this sediment settling out of suspension
as each tsunami wave slows (Fig. 23.3). From a normally graded tsunami deposit
interval, this model can be used to calculate the necessary flow speed to suspend
the observed sediment. Specifically, this model can be used if suspension (normal)
grading is observed, where particular intervals within a tsunami deposit exhibit grain
size distribution shifts toward finer deposits (Fig. 23.3). Additional basic assump-
tions for the applicability of this model include the following: 1) that sediment is
transported in suspension, 2) a steady flow turbulence formulation is applicable to
the phase close to the maximum speed of the tsunami, 3) significant sediment is
available for suspension and subsequent deposition, 4) suspended sediment exists
in the water column in equilibrium concentration profiles, 5) the resultant deposit
is formed from clearing of equilibrium suspended sediment profiles, and 6) no
erosion occurs during settling or the backwash process (Table 23.1).

The flow speed of the tsunami can be computed using the grain size distribution
and thickness of a suspension-graded interval in the tsunami deposit, and assuming
bottom roughness to link the flow conditions required for necessary equilibrium sus-
pended sediment concentration profiles. To calculate equilibrium sediment concen-
tration depth profiles resulting from the upward diffusion balance with the
downward settling of grains, Jaffe and Gelfenbaum (2007) offer the following Rouse
styled formulation:

N 1

Ci(z) = Cre" S5 (23.11)
where C;(z) is the sediment concentration of a given size class i at elevation z above
the bed, C,, is the reference concentration for given size class i, wy, is the settling
velocity associated with size class i, zosrq 1S the bottom roughness parameter, and
K(z) is the eddy viscosity described as a function of the shear velocity, flow depth,
and distance above the bed. In a refinement to the model, Jaffe et al. (2012) incor-
porated the ability to specify roughness coefficients using Manning’s n, a higher
roughness than used in Jaffe and Gelfenbaum (2007), which resulted in lower calcu-
lated tsunami flow speed.

To link the observed deposit grain sizes and amount of sediment in suspension
for a specific suspension-graded section of a tsunami deposit, Jaffe et al. (2012) offer
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a formulation, which iteratively adjusts the sediment source distribution and shear
velocity. For a given grain size class, i,

*SGLtop

h
/ Ci(z)dz= / Ci(z)dz (23.12)
0

“SGLbot

where £ is the tsunami flow depth, C;(z) is the sediment volume concentration of a
given grain size class i at an elevation above the bed (z), *SGLbot is the bottom of a
specific suspension-graded section of a tsunami deposit, and *SGLtop is the top of
the same suspension-graded section.

Once the shear velocity (Ux) required to produce a specific suspension-graded
interval of a tsunami deposit is determined, the flow speed profile for the tsunami,
U(z), can be determined using the following:

z 2
U(z) = / Klé) dz (23.13)

where zg is the roughness of the bottom, and K(z) is the eddy viscosity.

TsuSedMod has been successfully applied to reconstruct modern tsunamis in
Papua New Guinea (Jaffe and Gelfenbaum, 2007), Sumatra/Java (Spiske et al.,
2010), Samoa (Jaffe et al., 2011), Japan (Jaffe et al., 2012), and paleotsunamis in
Oregon (Witter et al., 2012) and Peru (Spiske et al., 2013).

Combined

Recent work has combined some previously discussed models, and they are briefly
mentioned here but are beyond the scope of this chapter. A combined iterative
model, TSUFLIND (Tang and Weiss, 2015) incorporates three previously discussed
inverse models (Jaffe and Gelfenbaum, 2007; Moore et al., 2007; Soulsby et al.,
2007). Important assumptions for this model are the following: 1) sediment transport
and deposition during a tsunami are uniform in space and time, and 2) the deposit
forms from horizontal convergence and suspension settling. Similar to previously
discussed models, the tsunami deposit characteristics are extracted from field data
to match sediment thicknesses and grain size distributions. TSUFLIND has been
applied to the modern 2004 Indian Ocean Tsunami in India. For more details, the
reader is referred to Tang and Weiss (2015).

TSUFLIND-EnKF (Tang et al., 2018) incorporates TSUFLIND as a forward
model, an inversion method (EnKF), and the field data on which the inversion
method is based. For more details, the reader is referred to Tang et al. (2018).

Experimental studies

Experimental, or laboratory flume, studies can be used to examine tsunami/storm
wave propagation, sediment transport, and resulting deposition. As it is nearly
impossible to observe these processes in real time during an event, these
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experimental studies provide valuable insights. Additionally, as mentioned earlier,
deposits often underconstrain some variables that can be associated with hydrody-
namics, which require many inverse approaches to make simplifying assumptions
(Johnson et al., 2016). Experimental studies can better constrain differences in
bed versus suspended load sediment transport during tsunamis. These approaches
have contributed to a better understanding of local sediment transport under extreme
flow conditions (Yoshii et al., 2017). In general, these laboratory studies can provide
important data concerning deposit source, grain size distributions, wave hydrody-
namics, and the resultant deposits that can then quantitatively scale to natural tsu-
namis and storms. They are also useful in testing the preceding inverse approaches.

Experimental studies primarily use flumes of various dimensions and tsunamis of
different wave characteristics to subsequently impact different sediment types,
slopes, and morphologies (Takahashi et al., 2000; Yoshii et al., 2009; Yamaguchi
and Sekiguchi, 2015; Johnson et al., 2016). The waves themselves are primarily
created using water pumps and gates. Flow characteristics during the experiments
are measured with devices such as cameras, wave gauges, laser flow meters, acoustic
doppler velocimeters, ultrasonic transducers, and/or propeller flow meters. Turbidity
can be measured using forward scattering sensors calibrated to suspended sediment
concentration. Topography can be measured within the flume using laser displace-
ment meters and cameras. Small sediment traps can be used to capture overflow. Af-
ter an experimental run, the water is typically drained very slowly, leaving behind
the resultant deposit. This deposit can then be photographed, scanned, measured,
scraped, sliced, cored, and/or stored for further laboratory analyses.

Laboratory studies provide the opportunity to improve upon inversion models in
that they can test the models without needing to wait for a destructive, infrequent
natural event. These experimental studies have provided independent assessments
of many aforementioned inverse numerical modeling studies. For example, Johnson
et al. (2016, 2017) used experimental flume bores, which mimic the characteristics
of tsunamis and storm surges. Johnson et al. (2016) applied the inverse model of
Woodruff et al. (2008) to the deposits created in the experimental study. They
discovered that at 95% confidence, the Woodruff et al. (2008) model predicts
time-averaged flow depths for an event to about a factor of 2, and time-averaged
flow velocities downstream to about a factor of 1.5. Johnson et al. (2017) determined
that the median grain size within a deposit better predicted mean flow hydraulics as
opposed to the 95™ percentile grain sizes. They also determined that transport dis-
tances longer than one to two advection length scales are needed for the grain
size distribution in the deposit to be reasonably used to predict flow depths and
velocities.

Laboratory studies also provide insight on tsunami deposit sedimentary struc-
tures as well as the validity of certain inverse model assumptions. Yoshii et al.
(2017) showed that inverse grading was associated with depositional processes as
opposed to the vertical distribution of grain sizes in the actual flow. They suggest
that fine sand moved into the pore spaces between more coarse sand, while the
coarse sand in the upper part of deposits implies that coarse sand was mobilized
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during deposition. This process is known as kinetic sieving (dynamic sorting).
Yoshii et al. (2017) also determined that sediment deposited near the tsunami inun-
dation limit showed rapidly fining sediment of varying chemical compositions.
Yoshii et al. (2018) determined that the inundation reached much further inland
than sandy deposits. They observed the formation of an inversely graded deposit
in a range of inland deposits, which they also attributed to kinetic sieving. Addition-
ally, sediment behind the dunes became liquefied, which they hypothesize to be a
sedimentary characteristic specific to earthquake-derived tsunamis.

Current challenges, potentialities and future directions

As discussed before, there is much that can be learned from experimental studies and
inverse modeling approaches applied to tsunami and storm deposits, yet there
remain a number of challenges. Primarily, testing all of these models with more
global field observations and experimental studies remains of the utmost impor-
tance. While this has certainly been done to some degree (see preceding examples),
this model validation can determine whether necessary assumptions are appropriate,
in addition to how well the models can constrain processes such as flooding height,
inundation, and flow speed. Another challenge with inverse models is quantifying
uncertainty (Jaffe et al., 2016). Laboratory studies also face challenges, namely
with scaling (Yoshii et al., 2017). For small-scale experiments, particle size and
settling velocities are difficult to scale appropriately with that of the flow (Takahashi
et al., 2000; Yoshii et al., 2009; Yamaguchi and Sekiguchi, 2015; Johnson et al.,
2016). Experimental work has thus generally been moving toward larger scales,
which often is cost and space prohibitive.

A limited understanding of the inundation and transport processes associated with
tsunamis and storms presents challenges for applying these models discussed to
paleo-events. While it is beyond the scope of this study, another major challenge in
the field involves a coupling of inverse and forward approaches (Sugawara et al.,
2014, 2015). These hybrid techniques, in addition to combined modeling approaches
(e.g., Tang and Weiss, 2015; Tang et al., 2018), could yield tremendous insight for
both modern and paleo-events, and they currently represent the cutting edge for
this field.

Conclusions

Field-based surveying, experimental studies, and inverse numerical models should
be viewed as a continuum of investigations, which can greatly aid in understanding
tsunami and storm impacts. This chapter outlines typical field survey sampling con-
siderations, noting that no two events are exactly alike and require an adaptable
approach in terms of sampling and study. Inverse numerical models can be applied
to these deposits to better constrain event parameters such as flooding height, inun-
dation, and flow speed. Experimental models use laboratory observations in flumes
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to examine flow characteristics and associated deposits and can be compared with
field observations and inverse approaches. However, in essence, inverse and exper-
imental approaches are idealistic flooding scenarios and should be regarded as
overly simplistic views of the tsunami/storm flooding process. Both require a num-
ber of assumptions to be applicable to naturally occurring events. Realistically, both
models and experimental work should be viewed as a method for generally con-
straining tsunami/storm characteristics rather than arriving at an exact solution.
Since the most destructive tsunami and storm events are rare, and it is often chal-
lenging or impossible to directly measure certain characteristics, the insight gleaned
from the combination of field, modeling, and experimental studies still offers the
best opportunity for constraining flow and sediment transport conditions. Therefore,
their application in addition to the future directions outlined before should continue
to be important considerations in tsunami and storm research.
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